Convertible, nearly decomposable, and nearly reducible matrices

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

r-Indecomposable and r-Nearly Decomposable Matrices

Let n, r be integers with 0 ≤ r ≤ n− 1. An n×n matrix A is called r-partly decomposable if it contains a k×l zero submatrix with k+l = n−r+1. A matrix which is not r-partly decomposable is called r-indecomposable (shortly, r-inde). Let Eij be the n × n matrix with a 1 in the (i, j) position and 0’s elsewhere. If A is r-indecomposable and, for each aij 6= 0, the matrix ∗Research supported by Nat...

متن کامل

Nearly positive matrices

Nearly positive matrices are nonnegative matrices which, when premultiplied by orthogonal matrices as close to the identity as one wishes, become positive. In other words, all columns of a nearly positive matrix are mapped simultaneously to the interior of the nonnegative cone by mutiplication by a sequence of orthogonal matrices converging to the identity. In this paper, nearly positive matric...

متن کامل

Matrices with Maximum Upper Multiexponents in the Class of Primitive, Nearly Reducible Matrices

B. Liu has recently obtained the maximum value for the kth upper multiexponents of primitive, nearly reducible matrices of order n with 1 ≤ k ≤ n. In this paper primitive, nearly reducible matrices whose kth upper multiexponents attain the maximum value are completely characterized.

متن کامل

Simple Construction of a Frame which is $epsilon$-nearly Parseval and $epsilon$-nearly Unit Norm

In this paper, we will provide a simple method for starting with a given finite frame for an $n$-dimensional Hilbert space $mathcal{H}_n$ with nonzero elements and producing a frame which is $epsilon$-nearly Parseval and $epsilon$-nearly unit norm. Also, the concept of the $epsilon$-nearly equal frame operators for two given frames is presented. Moreover, we characterize all bounded invertible ...

متن کامل

Quasi{lumpability, Lower Bounding Coupling Matrices, and Nearly Completely Decomposable Markov Chains

In this paper, it is shown that nearly completely decomposable (NCD) Markov chains are quasi{lumpable. The state space partition is the natural one, and the technique may be used to compute lower and upper bounds on the stationary probability of each NCD block. In doing so, a lower bounding nonnegative coupling matrix is employed. The nature of the stationary probability bounds is closely relat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 1993

ISSN: 0024-3795

DOI: 10.1016/0024-3795(93)90368-x